

Plano de Ensino Campus: III - Leopoldina

DISCIPLINA: Tópicos Especiais em Eletrônica: CÓDIGO: GT03ELE002.1 Instrumentação e Sistemas de Medidas

VALIDADE: Início: AGOSTO/2022 Término:

Carga Horária: Total: 45 horas/aula Semanal: 3 aulas Créditos: 3

Modalidade: Prática

Classificação do Conteúdo pelas DCN: Específica

Fmenta:

1. Introdução a Sistemas de Medição, Distribuição de Medidas (precisão, dispersão, combinação de medidas); 2. Erros de medição (tipos e causas); 3. Características de Sensores (sinais de saída, faixa de utilização, sensibilidade, linearidade, limiar de medição, resolução, histerese, relação sinal/ruído, resposta em frequência, classes de proteção); 4. Tipos de Sensores; 5. Análise e Processamento de Sinais Medidos (aquisição, janelamento, filtragem, FFT, leakage, aliasing, correlação); 6. Sensores de Presença e Proximidade (fim de curso, óptico, indutivo, capacitivo, ultra-sônico, magnético), Deslocamento e Velocidade (potenciômetro, LVDT, RVDT, encoder, tacogerador, extensômetro); 7. Sensores de Aceleração (Velocidade e Aceleração); 8. Sensores de Força, Torque e Pressão (extensômetro, Piezoelétrico, tubo de Pitot) / Sensores de Campo Magnético (Efeito Hall); 9. Sensores de Temperatura (termoresistor, termistor, termopar, pirômetro) / Sensores de Vazão (tubo de Pitot, anemômetro, arrasto, rotâmetro, placa de orifício, bocal, Venturi); 10. Sensores Ópticos (célula fotovoltaica, resistor dependente de luz, fotodiodo, foto transistor). Sensores Especiais (Sensores Inteligentes e Sensores sem Fio).

Curso		Período	Eixo	Obrig.	Optativa
Engenharia	de	8º ao 10º	Eletrônica		Х
Computação					

Departamento/Coordenação: Departamento de Eletroeletrônica

INTERDISCIPLINARIDADES

Pré-requisitos	Código
Microprocessadores	ETN06
Laboratório de Microprocessadores	ETN07
Co-requisitos	
Não há	

Obj	Objetivos: A disciplina devera possibilitar ao estudante		
1	Conhecer o sistema metrológico brasileiro e mundial.		
2	Conhecer o SI sistema internacional de unidades e como representar resultados		
	de medição neste sistema.		

Plano de Ensino Campus: III - Leopoldina

3	Caracterizar e dimensionar os erros atuantes em sistemas de instrumentação e medição e como mitigar efeitos das principais fontes de erro em sistemas de medição.
4	Entender os métodos de medição e funcionamento de instrumentos de medida e controle de diversas grandezas físicas, que são empregados em Engenharia.
5	Identificar e caracterizar estaticamente e dinamicamente os instrumentos e sistemas de medição.
6	Aplicar técnicas de instrumentação virtual, fusão de sensores e sensores inteligentes.
7	Aplicar na prática os conhecimentos teóricos adquiridos na disciplina, com vistas a conceber sistemas de medição (sensor, condicionamento de sinais, processamento de sinais, transmissão e apresentação de sinais aos sistemas de instrumentação e controle.

Unio	Carga-horária Horas/aula	
1	Apresentação do plano de ensino e plano didático da disciplina; Introdução a Sistemas de Medição (SM) e Caracterização Metrológica de SM.	02
2	Introdução a Sistemas de Medição (SM) e Caracterização Metrológica de SM.	02
3	Erros de medição (tipos e causas) e Análise Metrológica (Calibração e Aferição).	04
4	Erros de medição (tipos e causas) e Análise Metrológica (Calibração e Aferição).	02
5	Aula Prática – Sistemas embarcados. Calibração na prática de sensor de luminosidade LDR. Calibração na prática de sensor de temperatura DHT22. Calibração na prática de sensor de temperatura (Termistor). Calibrador universal (Padrão secundário) – Calibração por comparação com padrão. Avaliação prática.	04
6	Características de Sensores (sinais de saída, faixa de utilização, sensibilidade, linearidade, limiar de medição, resolução, histerese, relação sinal/ruído, resposta em frequência, classes de proteção); Características Estáticas de sensores.	03
7	Características dinâmicas de sensores e instrumentos de medição	02
8	Aula Prática – Teorema de amostragem e Filtros Digitais. Análise e Processamento de Sinais Medidos (aquisição, janelamento, filtragem, FFT, leakage, aliasing, correlação). Avaliação prática.	04
9	Condicionamento e processamento de sinais	02

Plano de Ensino Campus: III - Leopoldina

10	Tipos de sensores e princípios de transdução: Sensores de Presença e Proximidade (fim de curso, óptico, indutivo, capacitivo, ultrassônico, magnético).	02
11	Tipos de sensores e princípios de transdução: Sensores de Deslocamento e Velocidade (potenciômetro, LVDT, RVDT, encoder, tacogerador, extensômetro).	02
12	Aula Prática – Sensores Tendências e Instrumentação Virtual. Avaliação Prática.	04
13	Objetos Inteligentes (Sensores e Atuadores Inteligentes); Fusão de Sensores; Instrumentação Virtual.	02
14	Tipos de sensores e princípios de transdução: (Medição de massa e força; Medição de rotação, torque e potência).	02
15	Tipos de sensores e princípios de transdução: (Medição de pressão; Medição de vazão; Medição de velocidade em escoamentos).	02
16	Tipos de sensores e princípios de transdução: Medição de Temperatura.	02
17	Aula Prática – Condicionamento de sinais com amplificadores operacionais (amplificação, atenuação, filtragem, ponte de wheatstone, amplificadores para instrumentação). Avaliação Prática.	04
	Total	45

Bib	liografia Básica
1	AGUIRRE, L.A. "Fundamentos de instrumentação", 1ª edição, 2013, Pearson.
2	BALBINOT, A., BRUSAMARELLO, V.J., 2010, Instrumentação e Fundamentos
	de Medidas, Vol. I e II, 2ª Ed., Ed. LTC.
3	DELMÉE, Gérald J.; BEGA, Egídio Alberto (Org.). Instrumentação industrial. 3.
	ed. Rio de Janeiro: Interciência, 2011. xxv, 668 p., il. ISBN 978-/8-7193-245-6
	(broch.).
4	DUNN, WILLIAM C. "Fundamentos de Instrumentação Industrial e Controle de
	Processos", 1ª edição, 2013, Bookman.
5	PERTENCE JÚNIOR, ANTÔNIO. Amplificadores Operacionais e Filtros Ativos.
	6 ^a ed. São Paulo: Artmed. 304 p.

Bib	liografia Complementar
1	2nd Edition. Measurement, Instrumentation, and Sensors Handbook. Two-
	Volume Set. Edited By John G. Webster, Halit Eren. Copyright Year 2014. ISBN
	9781439848838. Published January 29, 2014 by CRC Press, 3559 Pages. 1960
	B/W Illustrations.
2	CASSANDRAS, Christos G.; LAFORTUNE, Stéphane. Introduction to discrete
	event systems. 2nd ed. New York: Springer, c2008. xxiii, 769 p. ISBN
	9780387333328
3	DOEBELIN, E. O., Measurement Systems, 4 Ed. McGraw-Hill, 1990.

Plano de Ensino Campus: III - Leopoldina

4	DOEBELIN, Ernest O. Instrumentation design studies. Boca Raton: CRC Press,
	c2010. xii, 711 p., il. ISBN 978-1-4398-1948-7.
5	NAWROCKI, Waldemar. Measurement systems and sensors. Boston: Artech
	House, c2005. xi, 325 p., il. Inclui referências e índice. ISBN 1-58053-945-9.
6	PLACKO, Dominique (Ed.). Fundamentals of instrumentation and measurement.
	London: ISTE, c2007. xxil, 532 p., il. (Instrumentation and Measurement Series).
	ISBN 978-1-905209-39-2.
7	SOLOMAN, Sabrie. Sensors and control systems in manufacturing. 2. ed. New
	York: Mc Graw-Hill, 2010. ISBN 9780071605724.
8	TUMANSKI, S. Principles of electrical measurement. Boca Raton, FL: Taylor &
	Francis, c2006. xii, 472 p., il. (in Sensors). ISBN 978-0-7503-1038-3 (enc.).
9	WEBSTER, John G. (Ed.). The measurement, instrumentation, and sensors
	handbook. Boca Raton: CRC Press, c1999. 1 v. (várias paginações), il. (The
	Electrical Engineering Handbook Series). Inclui referências, apêndice e índice.
	ISBN 0-8493-8347-1.
10	Artigos e materiais diversos que serão disponibilizados ao longo da disciplina.

FOLHA DE ASSINATURAS

Emitido em 18/07/2022

PLANO DE ENSINO Nº 760/2022 - CECOMLP (11.51.27)

(Nº do Protocolo: NÃO PROTOCOLADO)

(Assinado digitalmente em 09/08/2022 17:53) GABRIELLA CASTRO BARBOSA COSTA DALPRA

> COORDENADOR - TITULAR CECOMLP (11.51.27) Matrícula: 2933153

Para verificar a autenticidade deste documento entre em https://sig.cefetmg.br/documentos/ informando seu número: 760, ano: 2022, tipo: PLANO DE ENSINO, data de emissão: 08/08/2022 e o código de verificação: 6ccfd82084